Answer:
a) The profit function is [tex]P(x) = -x^{2}+60\cdot x -100[/tex], b) The marginal profit function is [tex]P'(x) = -2\cdot x + 60[/tex].
Step-by-step explanation:
a) Let be [tex]C(x) = 30\cdot x + 100[/tex] (cost function) and [tex]R(x) = -x^{2}+90\cdot x[/tex] (revenue function), the profit function is found by subtracting the cost function from the revenue function. That is:
[tex]P(x) = R(x)-C(x)[/tex]
[tex]P(x) = -x^{2}+90\cdot x -(30\cdot x + 100)[/tex]
[tex]P(x) = -x^{2}+90\cdot x -30\cdot x -100[/tex]
[tex]P(x) = -x^{2}+60\cdot x -100[/tex]
b) The marginal profit function is the first derivative of the profit function:
[tex]P'(x) = -2\cdot x + 60[/tex]