The cost and revenue are defined, in dollars, as C(x) = 30x + 100 and R(x) = -x2 + 90x.

Required:
a. Find and simplify the profit function, defined by P(x).
b. Use a. to find the marginal profit function.

Respuesta :

Answer:

a) The profit function is [tex]P(x) = -x^{2}+60\cdot x -100[/tex], b) The marginal profit function is [tex]P'(x) = -2\cdot x + 60[/tex].

Step-by-step explanation:

a) Let be [tex]C(x) = 30\cdot x + 100[/tex] (cost function) and [tex]R(x) = -x^{2}+90\cdot x[/tex] (revenue function), the profit function is found by subtracting the cost function from the revenue function. That is:

[tex]P(x) = R(x)-C(x)[/tex]

[tex]P(x) = -x^{2}+90\cdot x -(30\cdot x + 100)[/tex]

[tex]P(x) = -x^{2}+90\cdot x -30\cdot x -100[/tex]

[tex]P(x) = -x^{2}+60\cdot x -100[/tex]

b) The marginal profit function is the first derivative of the profit function:

[tex]P'(x) = -2\cdot x + 60[/tex]

ACCESS MORE