Answer:
[tex]\bold{m\ =\ \dfrac5{(p-r)n}}[/tex]
Step-by-step explanation:
[tex]\bold{r+\dfrac5{mn}\ =\ p}\\\\ {}\quad-r\qquad-r\\\\{}\ \ \bold{\dfrac5{mn}\ =\ p-r}\\\\{}\ ^{_\times}(mn)\quad ^{_\times}(mn)\\\\{}\quad\bold{5\ =\ (p-r)^{_\times}(mn)}\\\\\div(p-r)\quad\div(p-r)\\\\{}\ \ \bold{\dfrac5{p-r}\ =\ mn}\\\\{}\quad \ \div n\quad\ \ \div n\\\\\bold{\dfrac5{(p-r)n}\ =\ m}[/tex]
If you mean (r+5)/mn then:
[tex]\bold{\dfrac{r+5}{mn}\ =\ p}\\\\{}\ ^{_\times}(mn)\quad ^{_\times}(mn)\\\\{}\ \bold{r+5\ =\ pmn}\\\\\div(pn)\quad\div(pn)\\\\{}\ \ \bold{\dfrac{r+5}{pn}\ =\ m}[/tex]