The perimeter of the polygon shown in the figure is _______. Question 9 options: 204 units 2√34 +6 units 15 units 30 units

Answer:
[tex] 2\sqrt{34} + 6 units [/tex]
Step-by-step explanation:
The perimeter of the polygon shown = AC + BC + AB
Using distance formula, calculate the distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex], calculate AC, BC, and AB.
The coordinates of the points are as follows,
A(3, 5),
B(0, 0)
C(6, 0)
Find AB:
[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Where,
A(3, 5) => (x1, y1)
B(0, 0) => (x2, y2)
[tex] AB = \sqrt{(0 - 3)^2 + (0 - 5)^2} [/tex]
[tex] AB = \sqrt{(-3)^2 + (-5)^2} = \sqrt{9 + 25} = \sqrt{34} [/tex]
[tex] AB = \sqrt{34} units [/tex]
Find BC:
BC is easy to determine from the graph directly. The distance from point B to C, is 6 units.
Find AC:
[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Where,
A(3, 5) => (x1, y1)
C(6, 0) => (x2, y2)
[tex] AC = \sqrt{(6 - 3)^2 + (0 - 5)^2} [/tex]
[tex] AB = \sqrt{(3)^2 + (-5)^2} = \sqrt{9 + 25} = \sqrt{34} [/tex]
[tex] AC = \sqrt{34} units [/tex]
Perimeter of the polygon = [tex] \sqrt{34} + 6 + \sqrt{34} [/tex]
[tex] = (\sqrt{34} + \sqrt{34}) + 6 [/tex]
[tex] = 2\sqrt{34} + 6 [/tex]