Answer:
D(9, 1)
Explanation:
Since A is the midpoint of ED, then;
A = ([tex]\frac{X_{1}+X_{2} }{2}[/tex], [tex]\frac{Y_{1}+Y_{2} }{2}[/tex])
A(4, 5) ⇒ 4 = [tex]\frac{X_{1}+X_{2} }{2}[/tex] and 5 = [tex]\frac{Y_{1}+Y_{2} }{2}[/tex]
[tex]\frac{X_{1}+X_{2} }{2}[/tex] = 4
[tex]X_{1}[/tex] + [tex]X_{2}[/tex] = 8
But [tex]X_{1}[/tex] = -1, then;
-1 + [tex]X_{2}[/tex] = 8
[tex]X_{2}[/tex] = 9
[tex]\frac{Y_{1}+Y_{2} }{2}[/tex] = 5
[tex]Y_{1}[/tex] + [tex]Y_{2}[/tex] = 10
But [tex]Y_{1}[/tex] = 9, then;
9 + [tex]Y_{2}[/tex] = 10
[tex]Y_{2}[/tex] = 1
Therefore, point D has coordinates (9, 1).