Given that point A is the midpoint of line segment ED, where E( -1,9) and A(4,5), what is the location of point D?

Respuesta :

Answer:

D(9, 1)

Explanation:

Since A is the midpoint of ED, then;

A = ([tex]\frac{X_{1}+X_{2} }{2}[/tex], [tex]\frac{Y_{1}+Y_{2} }{2}[/tex])

A(4, 5) ⇒ 4 =  [tex]\frac{X_{1}+X_{2} }{2}[/tex] and 5 = [tex]\frac{Y_{1}+Y_{2} }{2}[/tex]

[tex]\frac{X_{1}+X_{2} }{2}[/tex] = 4

[tex]X_{1}[/tex] + [tex]X_{2}[/tex] = 8

But [tex]X_{1}[/tex] = -1, then;

-1 + [tex]X_{2}[/tex] = 8

[tex]X_{2}[/tex] = 9

[tex]\frac{Y_{1}+Y_{2} }{2}[/tex] = 5

[tex]Y_{1}[/tex] + [tex]Y_{2}[/tex] = 10

But [tex]Y_{1}[/tex] = 9, then;

9 + [tex]Y_{2}[/tex]  = 10

[tex]Y_{2}[/tex]  = 1

Therefore, point D has coordinates (9, 1).

ACCESS MORE