In human cells, a dynamic equilibrium exists between carbonic acid (H2CO3) and carbon dioxide (CO).
H2CO3(aq) = CO2() + H200
When a person exercises, the body's cells metabolize glucose to gain energy. This metabolism also causes an increase in the
concentration of carbon dioxide.
Le Chatelier's principle states that stresses applied to a system in dynamic equilibrium will cause the system to change in order to
alleviate those stresses. According to this principle, how would an increase in carbon dioxide concentration affect the system?
A. There would be a decrease in the concentration of carbonic acid.
В. There would be an increase in the concentration of glucose.
C. There would be an increase in the concentration of water.
There would be an increase in the concentration of carbonic acid.
D There would be an increase in the concentration of carbonic acid.

Respuesta :

D There would be an increase in the concentration of carbonic acid

There would be an increase in the concentration of carbonic acid - this is how an increase in carbon dioxide concentration influences the system.

What is dynamic equilibrium?

In chemistry, a dynamic equilibrium lives once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, indicating there is no net change. Reactants and products exist formed at such a rate that the concentration of neither changes. It is a precise example of a system in a steady state. After a time, a reversible reaction in a closed system can get what we call a dynamic equilibrium.

The correct answer is option D.

To learn more about dynamic equilibrium refer to:

https://brainly.com/question/12920261

#SPJ2

ACCESS MORE