Respuesta :

Answer:

Domain x ≥ 0 Range y ≤ 0

Step-by-step explanation:

Answer:

[tex]Domain = \{x\,|\,x\geq 0\}[/tex]

[tex]Range=\{\,y\,|\,y\leq 0\}[/tex]

Step-by-step explanation:

Notice that the Range of the function (x-values for which the function exists) is limited by the possible values of x inside the square root. For [tex]\sqrt{x}[/tex] to exist, x must be larger than or equal to zero ([tex]x\geq 0[/tex])

So this gives us the description for building the Domain (what is called "set builder notation":

[tex]Domain = \{x\,|\,x\geq 0\}[/tex]

Now for the Range, let's look into all the possible values that these  [tex]x\geq 0[/tex] values of x can render:

[tex]x\geq 0\\\sqrt{x} \geq 0\\x\,\sqrt{x} \geq 0[/tex]

but now, if we multiply both sides of the inequality by "-4", the direction of the inequality changes rendering;

[tex]-4\,x\,\sqrt{x} \leq 0[/tex]

Since these are the possible values of the "y-coordinate", then we right the Range in set builder notation as:

[tex]Range=\{\,y\,|\,y\leq 0\}[/tex]