Consider the differential equation:


2y'' + ty' − 2y = 14, y(0) = y'(0) = 0.


In some instances, the Laplace transform can be used to solve linear differential equations with variable monomial coefficients.


If F(s) = ℒ{f(t)} and n = 1, 2, 3, . . . ,then

ℒ{tnf(t)} = (-1)^n d^n/ds^n F(s)


to reduce the given differential equation to a linear first-order DE in the transformed function Y(s) = ℒ{y(t)}.


Requried:

a. Sovle the first order DE for Y(s).

b. Find find y(t)= ℒ^-1 {Y(s)}

Respuesta :

(a) Take the Laplace transform of both sides:

[tex]2y''(t)+ty'(t)-2y(t)=14[/tex]

[tex]\implies 2(s^2Y(s)-sy(0)-y'(0))-(Y(s)+sY'(s))-2Y(s)=\dfrac{14}s[/tex]

where the transform of [tex]ty'(t)[/tex] comes from

[tex]L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)[/tex]

This yields the linear ODE,

[tex]-sY'(s)+(2s^2-3)Y(s)=\dfrac{14}s[/tex]

Divides both sides by [tex]-s[/tex]:

[tex]Y'(s)+\dfrac{3-2s^2}sY(s)=-\dfrac{14}{s^2}[/tex]

Find the integrating factor:

[tex]\displaystyle\int\frac{3-2s^2}s\,\mathrm ds=3\ln|s|-s^2+C[/tex]

Multiply both sides of the ODE by [tex]e^{3\ln|s|-s^2}=s^3e^{-s^2}[/tex]:

[tex]s^3e^{-s^2}Y'(s)+(3s^2-2s^4)e^{-s^2}Y(s)=-14se^{-s^2}[/tex]

The left side condenses into the derivative of a product:

[tex]\left(s^3e^{-s^2}Y(s)\right)'=-14se^{-s^2}[/tex]

Integrate both sides and solve for [tex]Y(s)[/tex]:

[tex]s^3e^{-s^2}Y(s)=7e^{-s^2}+C[/tex]

[tex]Y(s)=\dfrac{7+Ce^{s^2}}{s^3}[/tex]

(b) Taking the inverse transform of both sides gives

[tex]y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right][/tex]

I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that [tex]\frac{7t^2}2[/tex] is one solution to the original ODE.

[tex]y(t)=\dfrac{7t^2}2\implies y'(t)=7t\implies y''(t)=7[/tex]

Substitute these into the ODE to see everything checks out:

[tex]2\cdot7+t\cdot7t-2\cdot\dfrac{7t^2}2=14[/tex]