Answer:
Step-by-step explanation:
Given the limit of a function [tex]\lim_{h \to 0} \frac{(1+h)-1}{h}[/tex], to evaluate the limit, the following steps must be taken.
Step 1: Substitute h = 0 into the function given.
[tex]= \lim_{h \to 0} \frac{(1+h)-1}{h}\\\\[/tex]
[tex]= \frac{(1+0)-1}{0}\\\\= \frac{1-1}{0} \\\\= \frac{0}{0} (indeterminate)\\[/tex]
Step 2: Apply l'hospital rule
[tex]\lim_{h \to 0} \frac{\frac{d}{dh}[(1+h)-1] } {\frac{d}{dh}(h) } \\\\= \frac{0+1-0}{1}\\ \\= \frac{1}{1} \\ \\= 1[/tex]
Hence the limit of the function [tex]\lim_{h \to 0} \frac{(1+h)-1}{h} \ is \ 1[/tex]