Respuesta :

Answer:

Area of the triangle = 98.1 km²

Step-by-step explanation:

In the given triangle WXV,

m∠W + m∠X + m∠V = 180°

m∠W + 119° + 34° = 180°

m∠W = 180° - 153°

m∠W = 27°

By applying Sine rule in the given triangle,

[tex]\frac{\text{SInW}}{\text{XV}}=\frac{\text{SinX}}{\text{WV}}[/tex]

[tex]\frac{\text{SIn27}}{\text{XV}}=\frac{\text{Sin119}}{26}[/tex]

[tex]XV=\frac{26\times (\text{Sin27})}{\text{Sin119}}[/tex]

XV = 13.496 km

Area of the ΔWXV = [tex]\frac{1}{2}(\text{WV})(\text{XV})(\text{SinV})[/tex]

                               = [tex]\frac{1}{2}(26)(13.496)(0.55919)[/tex]

                               = 98.109

                               ≈ 98.1 km²