Answer:
Area of the triangle = 98.1 km²
Step-by-step explanation:
In the given triangle WXV,
m∠W + m∠X + m∠V = 180°
m∠W + 119° + 34° = 180°
m∠W = 180° - 153°
m∠W = 27°
By applying Sine rule in the given triangle,
[tex]\frac{\text{SInW}}{\text{XV}}=\frac{\text{SinX}}{\text{WV}}[/tex]
[tex]\frac{\text{SIn27}}{\text{XV}}=\frac{\text{Sin119}}{26}[/tex]
[tex]XV=\frac{26\times (\text{Sin27})}{\text{Sin119}}[/tex]
XV = 13.496 km
Area of the ΔWXV = [tex]\frac{1}{2}(\text{WV})(\text{XV})(\text{SinV})[/tex]
= [tex]\frac{1}{2}(26)(13.496)(0.55919)[/tex]
= 98.109
≈ 98.1 km²