PLease answer !!! Find constants $A$ and $B$ such that \[\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\] for all $x$ such that $x\neq -1$ and $x\neq 2$. Give your answer as the ordered pair $(A,B)$. and Find all values of $t$ such that $\lfloor t\rfloor = 2t + 3$. If you find more than one value, then list the values you find in increasing order, separated by commas.

Respuesta :

Answer:

1. [tex](A,B) = (3,-2)[/tex]

2. The values of t are: -3, -1

Step-by-step explanation:

Given

[tex]\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}[/tex]

[tex]|t| = 2t + 3[/tex]

Required

Solve for the unknown

Solving [tex]\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}[/tex]

Take LCM

[tex]\frac{x + 7}{x^2 - x - 2} = \frac{A(x+1) + B(x-2)}{(x - 2)(x-1)}[/tex]

Expand the denominator

[tex]\frac{x + 7}{x^2 - x - 2} = \frac{A(x+1) + B(x-2)}{x^2 - 2x + x -2}[/tex]

[tex]\frac{x + 7}{x^2 - x - 2} = \frac{A(x+1) + B(x-2)}{x^2 - x -2}[/tex]

Both denominators are equal; So, they can cancel out

[tex]x + 7 = A(x+1) + B(x-2)[/tex]

Expand the expression on the right hand side

[tex]x + 7 = Ax + A + Bx - 2B[/tex]

Collect and Group Like Terms

[tex]x + 7 = (Ax + Bx) + (A - 2B)[/tex]

[tex]x + 7 = (A + B)x + (A - 2B)[/tex]

By Direct comparison of the left hand side with the right hand side

[tex](A + B)x = x[/tex]

[tex]A - 2B = 7[/tex]

Divide both sides by x in [tex](A + B)x = x[/tex]

[tex]A + B = 1[/tex]

Make A the subject of formula

[tex]A = 1 - B[/tex]

Substitute 1 - B for A in [tex]A - 2B = 7[/tex]

[tex]1 - B - 2B = 7[/tex]

[tex]1 - 3B = 7[/tex]

Subtract 1 from both sides

[tex]1 - 1 - 3B = 7 - 1[/tex]

[tex]-3B = 6[/tex]

Divide both sides by -3

[tex]B = -2[/tex]

Substitute -2 for B in [tex]A = 1 - B[/tex]

[tex]A = 1 - (-2)[/tex]

[tex]A = 1 + 2[/tex]

[tex]A = 3[/tex]

Hence;

[tex](A,B) = (3,-2)[/tex]

Solving [tex]|t| = 2t + 3[/tex]

Because we're dealing with an absolute function; the possible expressions that can be derived from the above expression are;

[tex]t = 2t + 3[/tex]    and   [tex]-t = 2t + 3[/tex]

Solving [tex]t = 2t + 3[/tex]

Make t the subject of formula

[tex]t - 2t = 3[/tex]

[tex]-t = 3[/tex]

Multiply both sides by -1

[tex]t = -3[/tex]

Solving [tex]-t = 2t + 3[/tex]

Make t the subject of formula

[tex]-t - 2t = 3[/tex]

[tex]-3t = 3[/tex]

Divide both sides by -3

[tex]t = -1[/tex]

Hence, the values of t are: -3, -1

MIKE WAHOUSEKEYYYYYYYY
Ver imagen 13kloserss