Respuesta :
Answer:
[tex] \frac{3x}{3 - 2x} [/tex]
Step-by-step explanation:
Here,
f(x) = y
[tex]y = \frac{3x}{2x + 3} [/tex]
or , swapping x with y
[tex]x = \frac{3y}{2y + 3} [/tex]
now to solve for y we get
[tex]y = \frac{3x}{3 - 2x} [/tex]
now we put f inverse x instead of y
[tex] {f}^{ - 1} (x) = \frac{3x}{3 - 2x} [/tex]
I am done.