Respuesta :

Answer:

[tex] \frac{3x}{3 - 2x} [/tex]

Step-by-step explanation:

Here,

f(x) = y

[tex]y = \frac{3x}{2x + 3} [/tex]

or , swapping x with y

[tex]x = \frac{3y}{2y + 3} [/tex]

now to solve for y we get

[tex]y = \frac{3x}{3 - 2x} [/tex]

now we put f inverse x instead of y

[tex] {f}^{ - 1} (x) = \frac{3x}{3 - 2x} [/tex]

I am done.

I think it’s D,but I’m not sure