Answer:
See below.
Step-by-step explanation:
[tex]\cot(x-\frac{\pi}{2})=-\tan(x)[/tex]
Convert the cotangent to cosine over sine:
[tex]\frac{\cos(x-\frac{\pi}{2} )}{\sin(x-\frac{\pi}{2})} =-\tan(x)[/tex]
Use the cofunction identities. The cofunction identities are:
[tex]\sin(x)=\cos(\frac{\pi}{2}-x)\\\cos(x)=\sin(\frac{\pi}{2}-x)[/tex]
To convert this, factor out a negative one from the cosine and sine.
[tex]\frac{\cos(-(\frac{\pi}{2}-x ))}{\sin(-(\frac{\pi}{2}-x))} =-\tan(x)[/tex]
Recall that since cosine is an even function, we can remove the negative. Since sine is an odd function, we can move the negative outside:
[tex]\frac{\cos((\frac{\pi}{2}-x ))}{-\sin((\frac{\pi}{2}-x))} =-\tan(x)\\-\frac{\sin(x)}{\cos(x)} =-\tan(x)\\-\tan(x)\stackrel{\checkmark}{=}-\tan(x)[/tex]