Respuesta :
Answer:
The induced emf is [tex]\epsilon = 0.0280 \ V[/tex]
Explanation:
From the question we are told
The diameter of the loop is [tex]d = 6.7 cm = 0.067 \ m[/tex]
The magnetic field is [tex]B = 1.27 \ T[/tex]
The time taken is [tex]dt = 0.16 \ s[/tex]
Generally the induced emf is mathematically represented as
[tex]\epsilon = - N * \frac{\Delta \phi}{dt}[/tex]
Where N = 1 given that it is only a circular loop
[tex]\Delta \phi = \Delta B * A[/tex]
Where [tex]\Delta B = B_f - B_i[/tex]
where [tex]B_i[/tex] is 1.27 T given that the loop of wire was initially in the magnetic field
and [tex]B_f[/tex] is 0 T given that the loop was removed from the magnetic field
Now the area of the of the loop is evaluated as
[tex]A = \pi r^2[/tex]
Where r is the radius which is mathematically represented as
[tex]r = \frac{d}{2}[/tex]
substituting values
[tex]r = \frac{0.067}{2}[/tex]
[tex]r = 0.0335 \ m[/tex]
So
[tex]A = 3.142 * (0.0335)^2[/tex]
[tex]A = 0.00353 \ m^2[/tex]
So
[tex]\Delta \phi = (0- 127)* (0.00353)[/tex]
[tex]\Delta \phi = -0.00448 Weber[/tex]
=> [tex]\epsilon = - 1 * \frac{-0.00448}{0.16}[/tex]
=> [tex]\epsilon = 0.0280 \ V[/tex]