The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume that the emissivity eee is equal to 1 for these surfaces.

Required:
a. Find the radius RRigel of the star Rigel, the bright blue star in the constellation Orion that radiates energy at a rate of 2.7 x 10^31 W and has a surface temperature of 11,000 K.
b. Find the radius RProcyonB of the star Procyon B, which radiates energy at a rate of 2.1 x 10^23 W and has a surface temperature of 10,000 K. Assume both stars are spherical. Use σ=5.67 x 10−8^ W/m^2*K^4 for the Stefan-Boltzmann constant.

Respuesta :

Given that,

Energy [tex]H=2.7\times10^{31}\ W[/tex]

Surface temperature = 11000 K

Emissivity e =1

(a). We need to calculate the radius of the star

Using formula of energy

[tex]H=Ae\sigma T^4[/tex]

[tex]A=\dfrac{H}{e\sigma T^4}[/tex]

[tex]4\pi R^2=\dfrac{H}{e\sigma T^4}[/tex]

[tex]R^2=\dfrac{H}{e\sigma T^4\times4\pi}[/tex]

Put the value into the formula

[tex]R=\sqrt{\dfrac{2.7\times10^{31}}{1\times5.67\times10^{-8}\times(11000)^4\times 4\pi}}[/tex]

[tex]R=5.0\times10^{10}\ m[/tex]

(b). Given that,

Radiates energy [tex] H=2.1\times10^{23}\ W[/tex]

Temperature T = 10000 K

We need to calculate the radius of the star

Using formula of radius

[tex]R^2=\dfrac{H}{e\sigma T^4\times4\pi}[/tex]

Put the value into the formula

[tex]R=\sqrt{\dfrac{2.1\times10^{23}}{1\times5.67\times10^{-8}\times(10000)^4\times4\pi}}[/tex]

[tex]R=5.42\times10^{6}\ m[/tex]

Hence, (a). The radius of the star is [tex]5.0\times10^{10}\ m[/tex]

(b). The radius of the star is [tex]5.42\times10^{6}\ m[/tex]