Answer:
85.6 degrees.
Step-by-step explanation:
The given equations of lines are
[tex]3x-5y=-15[/tex]
[tex]4x+2y=7[/tex]
We need to find the measure of the acute angle formed by these lines.
[tex]Slope=\dfrac{-\text{Coefficient of }x}{\text{Coefficient of }y}[/tex]
Slope of given lines are
[tex]m_1=\dfrac{-3}{-5}=\dfrac{3}{5}[/tex]
[tex]m_2=\dfrac{-4}{2}=-2[/tex]
Angle between two lines is
[tex]\tan \theta = \left|\dfrac{m_1-m_2}{1+m_1m_2}\right|[/tex]
[tex]\tan \theta = \left|\dfrac{\dfrac{3}{5}-(-2)}{1+\dfrac{3}{5}(-2)}\right|[/tex]
[tex]\tan \theta = \left|\dfrac{\dfrac{3+10}{5}}{\dfrac{5-6}{5}}\right|[/tex]
[tex]\tan \theta = \left|\dfrac{13}{1}\right|[/tex]
[tex]\tan \theta = 13[/tex]
[tex]\theta = \tan^{-1}(13)[/tex]
[tex]\theta \approx 85.6^{\circ}<90^{\circ}[/tex]
Therefore, the acute angle between given lines is 85.6 degrees.