Answer:
Step-by-step explanation:
Since m and k are the parallel lines and a transverse 'l' is intersecting these lines at two different points.
- Opposite angles at the point of intersection of parallel lines and the transverse will be the vertical angles.
∠1 ≅ ∠3, ∠2 ≅ ∠4, ∠5 ≅ ∠8 and ∠6 ≅ ∠7 [Vertical angles]
- Pair of angles between parallel lines 'k' and 'm' but on the opposite side of the transversal are the alternate interior angles.
∠4 ≅ ∠6 and ∠3 ≅ ∠5 [Alternate interior angles]
- Angles having the same relative positions at the point of intersection are the corresponding angles.
∠2 ≅ ∠6, ∠3 ≅ ∠8, ∠4 ≅ ∠7 and ∠1 ≅ ∠5 [Corresponding angles]
- Co interior angles are the angles between the parallel lines located on the same side of the transversal.
∠4 and ∠5, ∠3 and ∠6 [Co interior angles]
- Co exterior angles are the angles on the same side of the transverse but outside the parallel lines.
∠2 and ∠8, ∠1 and ∠7 [Co exterior angles]