Respuesta :
Answer:
Solving 5x + y = 5 and - 3x + 2y = 6 gives (4/13,45/13) Similarly solve other combinations by observing graph to get other coordinates. From the figure we have obtained coordinates of corners as:
Step-by-step explanation:
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
[tex]\boxed {x, y = 6 , 7}[/tex]
[tex][1] 2x - y = 5\\ [2] 3x - 2y = 4[/tex]
[tex]\boxed { y + 2x = 5 \\ -2y + 3x = 4}[/tex] ( This is for the screen shot )
// Solve equation [1] for the variable y
[tex][1] y = 2x - 5[/tex]
// Plug this in for variable y in equation [2]
[tex][2] 3x - 2 . (2x-5) = 4\\ [2] -x = -6[/tex]
// Solve equation [2] for the variable x
[tex][2] x = 6[/tex]
// By now we know this much :
[tex]x = 6\\ y = 2x-5[/tex]
// Use the x value to solve for y
[tex]y = 2(6)-5 = 7[/tex]
Then put |6 , 7|
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀