Respuesta :
Hi there! Hopefully this helps!
-----------------------------------------------------------------------------------------------------------
Question: "Prove that a^{4} + b^{4} + c^{4} > abc(a + b + c) , where a, b, c are different positive real numbers."
------------------------------------------------------------------------------------------------------------
From the AM and GM inequality, we have:
a^4 + b^4 ≥ 2a^2b^2
b^4 + c^4 ≥ 2b^2c^2
c^4 + a^4 ≥ 2a^2c^2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From adding the inequalities we have above and dividing by 2, we have:
a^4 + b^4 + c^4 ≥ a^2b^2 + b^2c^2 + c^2a^2......1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now we need to repeat the process of a^2b^2, b^2c^2, and c^2a^2 to get:
a^2b^2 + b^2c^2 ≥ 2b^2ac
b^2c^2 + c^2a^2 ≥ 2c^2ab
c^2a^2 + a^2b^2 ≥ 2a^2bc
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now, we add from what we have above and divide by 2 to get:
a^2b^2 + b^2c^2 + c^2a^2 ≥ (b^2ac + c^2ab + a^2bc) or abc(b + c + a).....2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So, from (1) and (2) it follows:
a^4 + b^4 + c^4 ≥ abc( a + b + c)
Answer:
0.5
Step-by-step explanation:
a+b+c=0—(1)
a2+b2+c2=1—(2)
We know that:
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca—(3)
Substituting (1) and (2) in (3) , 0=1+2(ab+bc+ca)
=>ab+bc+ca=−0.5—(4)
Squaring: (ab+bc+ca)2=0.25
=>a2b2+b2c2+c2a2+2ab2c+2bc2a+2a2bc=0.25
=>a2b2+b2c2+c2a2+2abc(a+b+c)=0.25
Since a+b+c=0 ,
a2b2+b2c2+c2a2=0.25—(4)
squaring (2) :
(a2+b2+c2)2=12
=>a4+b4+c4+2a2b2+2b2c2+2c2a2=1
=>a4+b4+c4+2(a2b2+b2c2+c2a2)=1—(5)
Substituting (4) in (5),
a4+b4+c4+2(0.25)=1
=>a4+b4+c4=0.5
Hope this helps :D