Respuesta :

Hi there! Hopefully this helps!

-----------------------------------------------------------------------------------------------------------

Question: "Prove that a^{4} + b^{4} + c^{4} > abc(a + b + c) , where a, b, c are different positive real numbers."

------------------------------------------------------------------------------------------------------------

From the AM and GM inequality, we have:

a^4 + b^4 ≥ 2a^2b^2

b^4 + c^4 ≥ 2b^2c^2

c^4 + a^4 ≥ 2a^2c^2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

From adding the inequalities we have above and dividing by 2, we have:

a^4 + b^4 + c^4 ≥ a^2b^2 + b^2c^2 + c^2a^2......1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now we need to repeat the process of a^2b^2, b^2c^2, and c^2a^2 to get:

a^2b^2 + b^2c^2 ≥ 2b^2ac

b^2c^2 + c^2a^2 ≥ 2c^2ab

c^2a^2 + a^2b^2 ≥ 2a^2bc

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now, we add from what we have above and divide by 2 to get:

a^2b^2 + b^2c^2 + c^2a^2 ≥ (b^2ac + c^2ab + a^2bc) or abc(b + c + a).....2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So, from (1) and (2) it follows:

a^4 + b^4 + c^4 ≥ abc( a + b + c)

Answer:

0.5

Step-by-step explanation:

a+b+c=0—(1)  

a2+b2+c2=1—(2)  

We know that:

(a+b+c)2=a2+b2+c2+2ab+2bc+2ca—(3)  

Substituting  (1)  and  (2)  in  (3) ,  0=1+2(ab+bc+ca)  

=>ab+bc+ca=−0.5—(4)  

Squaring:  (ab+bc+ca)2=0.25  

=>a2b2+b2c2+c2a2+2ab2c+2bc2a+2a2bc=0.25  

=>a2b2+b2c2+c2a2+2abc(a+b+c)=0.25  

Since  a+b+c=0 ,

a2b2+b2c2+c2a2=0.25—(4)  

squaring  (2) :

(a2+b2+c2)2=12

=>a4+b4+c4+2a2b2+2b2c2+2c2a2=1  

=>a4+b4+c4+2(a2b2+b2c2+c2a2)=1—(5)

Substituting (4) in (5),

a4+b4+c4+2(0.25)=1

=>a4+b4+c4=0.5

Hope this helps :D