Respuesta :

Answer/Step-by-step explanation:

Given, [tex] b(x) = (\frac{6}{7})^{x} [/tex]

The table for the function are:

When x = -2

[tex] b(-2) = (\frac{6}{7})^{-2} [/tex]

[tex] b(-2) = \frac{1}{(\frac{6}{7})^{2}} [/tex]

[tex] b(-2) = \frac{1}{(\frac{36}{49})} [/tex]

[tex] b(-2) = 1*\frac{49}{36} [/tex]

[tex] b(-2) = \frac{49}{36} [/tex]

When x = -1

[tex] b(-1) = (\frac{6}{7})^{-1} [/tex]

[tex] b(-1) = \frac{1}{(\frac{6}{7})} [/tex]

[tex] b(-1) = 1*\frac{7}{6} [/tex]

[tex] b(-2) = \frac{7}{6} [/tex]

When x = 0

[tex] b(0) = (\frac{6}{7})^{0} [/tex]

[tex] b(0) = \frac{6^0}{7^0} [/tex]

[tex] b(0) = \frac{1}{1} [/tex]

[tex] b(0) = 1 [/tex]

When x = 1

[tex] b(1) = (\frac{6}{7})^{1} [/tex]

[tex] b(1) = \frac{6}{7} [/tex]

When x = 2

[tex] b(2) = (\frac{6}{7})^{2} [/tex]

[tex] b(2) = \frac{6^2}{7^2} [/tex]

[tex] b(2) = \frac{36}{49} [/tex]