Respuesta :
Answer:
Correct answer is option A. T
Step-by-step explanation:
Given that
In a [tex]\triangle RST[/tex], RS = 7, RT = 10, and ST = 8.
To find:
Smallest angle = ?
Solution:
We can use cosine rule here to find the angle.
Formula for cosine rule:
[tex]cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}[/tex]
Where
a is the side opposite to [tex]\angle A[/tex]
b is the side opposite to [tex]\angle B[/tex]
c is the side opposite to [tex]\angle C[/tex]
Using the cosine rule:
[tex]cos T = \dfrac{ST^{2}+RT^{2}-RS^{2}}{2\times ST \times RT}\\\Rightarrow cos T = \dfrac{8^{2}+10^{2}-7^{2}}{2\times 8 \times 10}\\\Rightarrow cos T = \dfrac{64+100-49}{160}\\\Rightarrow cos T = \dfrac{115}{160}\\\Rightarrow \angle T = cos^{-1}(0.71875)\\\Rightarrow \angle T = 44.05^\circ[/tex]
Now, let us use Sine rule to find other angles:
[tex]\dfrac{a}{sinA} = \dfrac{b}{sinB} = \dfrac{c}{sinC}[/tex]
[tex]\dfrac{RS}{sinT} = \dfrac{ST}{sinR} = \dfrac{RT}{sinS}\\\Rightarrow \dfrac{7}{sin44.05} = \dfrac{8}{sinR} = \dfrac{10}{sinS}\\\Rightarrow \dfrac{7}{0.695} = \dfrac{8}{sinR} = \dfrac{10}{sinS}\\\Rightarrow sin R = \dfrac{8 \times 0.695}{7}\\\Rightarrow R = 52.58^\circ[/tex]
[tex]\Rightarrow sin S = \dfrac{10 \times 0.695}{7}\\\Rightarrow S = 83.14^\circ[/tex]
Smallest angle is [tex]\angle T[/tex]
Correct answer is option A. T