Respuesta :

Answer:

Option (D)

Step-by-step explanation:

By applying Sine rule in the given triangle WXY,

[tex]\frac{\text{SinW}}{\text{XY}}=\frac{\text{SinY}}{\text{XW}}=\frac{\text{SinX}}{\text{WY}}[/tex]

[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}=\frac{\text{Sin39}}{\text{WY}}[/tex]

[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}[/tex]

[tex]\frac{\text{XW}}{\text{XY}}=\frac{\text{Sin82}}{\text{Sin59}}[/tex]

      = 1.1489

XW : XY ≈ 1.15 : 1

[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin39}}{\text{WY}}[/tex]

[tex]\frac{\text{XY}}{\text{WY}}=\frac{\text{Sin59}}{\text{Sin39}}[/tex]

[tex]\frac{\text{XY}}{\text{WY}}=\frac{1.36}{1}[/tex]

[tex]\frac{\text{XY}}{\text{WY}}=\frac{\frac{1}{1}}{\frac{1}{1.36} }[/tex]

[tex]\frac{\text{XY}}{\text{WY}}=\frac{1}{0.7342}[/tex]

XY : WY = 1 : 0.7342

XW : XY : WY = 1.15 : 1 : 0.7342

Therefore, WX > XY > WY

Option (D). will be the correct option.