Assume that females have pulse rates that are normally distributed with a mean of μ=73.0 beats per minute and a standard deviation of σ=12.5 beats per minute. Complete parts​ (a) through​ (c) below.a. If 1 adult female is randomly​ selected, find the probability that her pulse rate is less than 76 beats per minute.b. If 25 adult females are randomly​ selected, find the probability that they have pulse rates with a mean less than 76 beats per minute.c. Why can the normal distribution be used in part​ (b), even though the sample size does not exceed​ 30?A. Since the mean pulse rate exceeds​ 30, the distribution of sample means is a normal distribution for any sample size.B. Since the distribution is of​ individuals, not sample​ means, the distribution is a normal distribution for any sample size.C. Since the distribution is of sample​ means, not​ individuals, the distribution is a normal distribution for any sample size.D. Since the original population has a normal​ distribution, the distribution of sample means is a normal distribution for any sample size.

Respuesta :

Answer:

a. the probability that her pulse rate is less than 76 beats per minute is 0.5948

b. If 25 adult females are randomly​ selected,  the probability that they have pulse rates with a mean less than 76 beats per minute is 0.8849

c.   D. Since the original population has a normal​ distribution, the distribution of sample means is a normal distribution for any sample size.

Step-by-step explanation:

Given that:

Mean μ =73.0

Standard deviation σ =12.5

a. If 1 adult female is randomly​ selected, find the probability that her pulse rate is less than 76 beats per minute.

Let X represent the random variable that is normally distributed with a mean of 73.0 beats per minute and a standard deviation of 12.5 beats per minute.

Then : X [tex]\sim[/tex] N ( μ = 73.0 , σ = 12.5)

The probability that her pulse rate is less than 76 beats per minute can be computed as:

[tex]P(X < 76) = P(\dfrac{X-\mu}{\sigma}< \dfrac{X-\mu}{\sigma})[/tex]

[tex]P(X < 76) = P(\dfrac{76-\mu}{\sigma}< \dfrac{76-73}{12.5})[/tex]

[tex]P(X < 76) = P(Z< \dfrac{3}{12.5})[/tex]

[tex]P(X < 76) = P(Z< 0.24)[/tex]

From the standard normal distribution tables,

[tex]P(X < 76) = 0.5948[/tex]

Therefore , the probability that her pulse rate is less than 76 beats per minute is 0.5948

b.  If 25 adult females are randomly​ selected, find the probability that they have pulse rates with a mean less than 76 beats per minute.

now; we have a sample size n = 25

The probability can now be calculated as follows:

[tex]P(\overline X < 76) = P(\dfrac{\overline X-\mu}{\dfrac{\sigma}{\sqrt{n}}}< \dfrac{ \overline X-\mu}{\dfrac{\sigma}{\sqrt{n}}})[/tex]

[tex]P( \overline X < 76) = P(\dfrac{76-\mu}{\dfrac{\sigma}{\sqrt{n}}}< \dfrac{76-73}{\dfrac{12.5}{\sqrt{25}}})[/tex]

[tex]P( \overline X < 76) = P(Z< \dfrac{3}{\dfrac{12.5}{5}})[/tex]

[tex]P( \overline X < 76) = P(Z< 1.2)[/tex]

From the standard normal distribution tables,

[tex]P(\overline X < 76) = 0.8849[/tex]

c. Why can the normal distribution be used in part​ (b), even though the sample size does not exceed​ 30?

In order to determine the probability in part (b);  the  normal distribution is perfect to be used here even when the sample size does not exceed 30.

Therefore option D is correct.

Since the original population has a normal distribution, the distribution of sample means is a normal distribution for any sample size.