Respuesta :
Answer:
the work done which is the lie integral = 48
Step-by-step explanation:
From the given question the normal to the plane formed by the point is estimated as follows:
n = (2,0,0) (0,5,1) = (0,-2,10)
On the plane line, the equation is : -2y + 10z =0
10 z = 2y
[tex]z = \dfrac{2y}{10}[/tex]
[tex]z = \dfrac{y}{5}[/tex]
Let take an integral look at this function; Vg(x,y,z) = V(-2y+10z) = (0,-2,10)
[tex]|V_g|(x,y,z)|= 2 \sqrt{26}[/tex]
[tex]dS = \sqrt{1+z_x^2+xz_y^2} dA[/tex]
dS = [tex]\dfrac{\sqrt{26} }{5} \ dA[/tex]
By definition; The curl of the vector field is:
[tex]Curl \ F= (\dfrac{\partial R}{\partial y}- \dfrac{\partial Q}{\partial z})i + ( \dfrac{\partial P }{\partial z} - \dfrac{\partial R}{\partial x}) j + ( \dfrac{\partial Q }{\partial x}- \dfrac{\partial P}{\partial y}) k[/tex]
Given that F: z² i + 2xy j + 5y² k
[tex]\bigtriangledown \times F = \begin{pmatrix} i \ \ \ \ j \ \ \ \ k \\ \\ \dfrac{\partial}{\partial x} \ \ \dfrac{\partial}{\partial y } \ \ \dfrac{\partial}{\partial z} \\ \\ z^2 \ \ 2xy \ \ 5y^2 \end{pmatrix} = \langle (10y -0), -(0-2z),(2y-0) \rangle[/tex]
[tex]\bigtriangledown \times F = \langle 10y,2z,2y \rangle[/tex]
Now; by applying stokes theorem, we have :
[tex]\int_c F \times dr = \int \int_s (\bigtriangledown \times F ) \times dS[/tex]
[tex]\int_c F \times dr = \int \int_s \langle 10 y,2z,2y \rangle \times \dfrac{1}{2 \sqrt{26}} \langle 0,-2,10 \rangle\dfrac{\sqrt{26}}{5}dA[/tex]
[tex]\int_c F \times dr =\dfrac{1}{10} \int \int_s \langle 10 y,2z,2y \rangle \times \langle 0,-2,10 \rangle \ dA[/tex]
[tex]\int_c F \times dr =\dfrac{1}{10} \int \int_s \langle -4z+20y \rangle \ dA[/tex]
[tex]\int_c F \times dr =\dfrac{1}{10} \int \int_s \langle -4 (\dfrac{1}{5}y)+20y \rangle \ dA[/tex]
[tex]\int_c F \times dr =\dfrac{1}{10} * \dfrac{96}{5}\int \limits ^2_{x=0}\int \limits ^5_{y=0} \ ydydx[/tex]
[tex]\int_c F \times dr =\dfrac{48}{25} * (2) * \dfrac{25}{2}[/tex]
[tex]\int_c F \times dr =48[/tex]
the work done which is the lie integral = 48