A random sample of 149 recent donations at a certain blood bank reveals that 76 were type A blood. Does this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood? Carry out a test of appropriate hypotheses using a significance level of 0.01. Would your conclusion have been different if a significance level of 0.05 has been used?

Respuesta :

Answer:

Yes it suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood.

Well if a significance level of 0.05 is used it will not affect the conclusion

Step-by-step explanation:

From the question we are told that

     The  sample size is   [tex]n = 149[/tex]

     The  number that where  type A blood is  k =  76

       The population proportion is   [tex]p = 0.40[/tex]

       The  significance level is  [tex]\alpha = 0.01[/tex]

Generally the sample proportion is mathematically represented as

      [tex]\r p = \frac{k}{n}[/tex]

=>    [tex]\r p = \frac{76}{149}[/tex]

=>    [tex]\r p = 0.51[/tex]

The  Null hypothesis is   [tex]H_o : p = 0.41[/tex]

The  Alternative hypothesis is  [tex]H_a : p \ne 0.40[/tex]

Next we obtain the critical value of [tex]\alpha[/tex] from the z-table.The value is  

       [tex]Z_{\alpha } = Z_{0.01} = 1.28[/tex]

Generally the test statistics is mathematically evaluated as

           [tex]t = \frac{\r p - p }{ \sqrt{ \frac{p(1-p)}{n} } }[/tex]    

substituting values

           [tex]t = \frac{0.51 - 0.40 }{ \sqrt{ \frac{0.40 (1-0.40 )}{149} } }[/tex]    

           [tex]t =2.74[/tex]

So looking at the values for t  and  [tex]Z_{0.01}[/tex] we see that  [tex]t > Z_{0.01}[/tex] so we reject the null hypothesis. Which means that there is no sufficient evidence to support the claim

Now if [tex]\alpha = 0.05[/tex] , the from the z-table the critical value for [tex]\alpha = 0.05[/tex] is  [tex]Z_{0.05} = 1.645[/tex]

So comparing the value of  t and  [tex]Z_{0.05} = 1.645[/tex]  we see that [tex]t > Z_{0.05}[/tex] hence the conclusion would not be different.