Use the information provided to determine a 95% confidence interval for the population variance. A researcher was interested in the variability in service time (in hours) spent by mechanics fixing the same automotive problem. A random sample was taken resulting in a sample of size 20 from a substantial file of reported experience. The summary statistics are as follows: n = 20, sample mean = 13.8 hours, sample standard deviation = 3.9 hours. Assume service time follows a normal distribution. Round to two decimal places.

Respuesta :

Answer:

The 95% confidence interval for the population variance is (8.80, 32.45).

Step-by-step explanation:

The (1 - α)% confidence interval for the population variance is given as follows:

[tex]\frac{(n-1)\cdot s^{2}}{\chi^{2}_{\alpha/2}}\leq \sigma^{2}\leq \frac{(n-1)\cdot s^{2}}{\chi^{2}_{1-\alpha/2}}[/tex]

It is provided that:

n = 20

s = 3.9

Confidence level = 95%

α = 0.05

Compute the critical values of Chi-square:

[tex]\chi^{2}_{\alpha/2, (n-1)}=\chi^{2}_{0.05/2, (20-1)}=\chi^{2}_{0.025,19}=32.852\\\\\chi^{2}_{1-\alpha/2, (n-1)}=\chi^{2}_{1-0.05/2, (20-1)}=\chi^{2}_{0.975,19}=8.907[/tex]

*Use a Chi-square table.

Compute the 95% confidence interval for the population variance as follows:

[tex]\frac{(n-1)\cdot s^{2}}{\chi^{2}_{\alpha/2}}\leq \sigma^{2}\leq \frac{(n-1)\cdot s^{2}}{\chi^{2}_{1-\alpha/2}}[/tex]

[tex]\frac{(20-1)\cdot (3.9)^{2}}{32.852}\leq \sigma^{2}\leq \frac{(20-1)\cdot (3.9)^{2}}{8.907}\\\\8.7967\leq \sigma^{2}\leq 32.4453\\\\8.80\leq \sigma^{2}\leq 32.45[/tex]

Thus, the 95% confidence interval for the population variance is (8.80, 32.45).

Ver imagen warylucknow