Respuesta :

Answer:

Therefore, perimeter of the given triangle is 18.300 cm.

Step-by-step explanation:

Area of the triangle ABC = [tex]\frac{1}{2}(\text{AB})(\text{BC})(\text{SinB})[/tex]

10 = [tex]\frac{1}{2}(3.2)(8.4)(\text{SinB})[/tex]

Sin(B) = [tex]\frac{10}{3.2\times 4.2}[/tex]

B = [tex]\text{Sin}^{-1}(0.74405)[/tex]

B = 48.08°

By applying Cosine rule in the given triangle,

(AC)² = (AB)² + (BC)²-2(AB)(BC)CosB

(AC)² = (3.2)² + (8.4)² - 2(3.2)(8.4)Cos(48.08)°

(AC)² = 10.24 + 70.56 - 35.9166

(AC)² = 44.88

AC = [tex]\sqrt{44.8833}[/tex]

AC = 6.6995 cm

Perimeter of the ΔABC = m(AB) + m(BC) + m(AC)

                                      = 3.200 + 8.400 + 6.6995

                                      = 18.2995

                                      ≈ 18.300 cm

Therefore, perimeter of the given triangle is 18.300 cm