Respuesta :

Answer:

a) [tex]a+b+c=\begin{pmatrix}-2\\-3\end{pmatrix}[/tex]

b) (i) [tex]a+2c=\begin{pmatrix}-4\\2\end{pmatrix}[/tex]

   (ii) [tex]k=2[/tex]

Step-by-step explanation:

It is given that,

[tex]a=\begin{pmatrix}4\\-10\end{pmatrix},b=\begin{pmatrix}-2\\1\end{pmatrix},c=\begin{pmatrix}-4\\6\end{pmatrix}[/tex]

a)

We need to find the value of a+b+c.

[tex]a+b+c=\begin{pmatrix}4\\-10\end{pmatrix}+\begin{pmatrix}-2\\1\end{pmatrix}+\begin{pmatrix}-4\\6\end{pmatrix}[/tex]

[tex]a+b+c=\begin{pmatrix}4+(-2)+(-4)\\-10+1+6\end{pmatrix}[/tex]

[tex]a+b+c=\begin{pmatrix}-2\\-3\end{pmatrix}[/tex]

b)

(i) We need to find the value of a+2c.

[tex]a+2c=\begin{pmatrix}4\\-10\end{pmatrix}+2\begin{pmatrix}-4\\6\end{pmatrix}[/tex]

[tex]a+2c=\begin{pmatrix}4\\-10\end{pmatrix}+\begin{pmatrix}-8\\12\end{pmatrix}[/tex]

[tex]a+2c=\begin{pmatrix}4+(-8)\\-10+12\end{pmatrix}[/tex]

[tex]a+2c=\begin{pmatrix}-4\\2\end{pmatrix}[/tex]

(ii) It is given that a+2c=kb, where k is an integer. We need to find the value of k.

[tex]a+2c=k\begin{pmatrix}-2\\1\end{pmatrix}[/tex]

[tex]\begin{pmatrix}-4\\2\end{pmatrix}=\begin{pmatrix}-2k\\k\end{pmatrix}[/tex]

On comparing both sides, we get

[tex]k=2[/tex]