Answer:
[tex] \boxed{\sf B. \ 2x^{2} + 11} [/tex]
Given:
f(x) = 3x² + 2
g(x) = x² - 9
To Find:
(f - g)(x)
Step-by-step explanation:
[tex]\sf (f -g)(x) = f(x) - g(x) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =(3x^{2} + 2) - (x^{2} - 9) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =3x^{2} + 2 - x^{2} + 9 \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =3x^{2} - x^{2} + 2 + 9 \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =(3x^{2} - x^{2}) + (2 + 9) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =2x^{2} + (2 + 9) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =2x^{2} + 11 [/tex]