Answer:
x = [tex]\frac{3wyz}{4wz+wy-2yz}[/tex]
Step-by-step explanation:
Given
[tex]\frac{2}{w}[/tex] + [tex]\frac{3}{x}[/tex] - [tex]\frac{4}{y}[/tex] = [tex]\frac{1}{z}[/tex]
Multiply through by wxyz to clear the fractions
2xyz + 3wyz - 4wxz = wxy ( subtract wxy from both sides )
2xyz + 3wyz - 4wxz - wxy = 0 ( subtract 3wyz from both sides )
2xyz - 4wxz - wxy = - 3wyz ( factor out x from each term on the left side )
x(2yz - 4wz - wy) = - 3wyz ( divide both sides by (2yz - 4wz - wy )
x = [tex]\frac{-3wyz}{2yz-4wz-wy}[/tex] ( multiply numerator/ denominator by - 1 )
x = [tex]\frac{3wyz}{4wz+wy-2yz}[/tex]