Answer:
[tex] b = 2.7 [/tex]
Step-by-step explanation:
Given:
< C = 53°
< B = 80°
a = 2
Required:
Find b
Solution:
The question given suggests we are given measures for a ∆.
To find side b, which corresponds to angle B, first, we'd find angle A, which corresponds to side a, then apply the Law of sines to find side b.
=> A = 180 - (53 + 80) = 47°
Law of Sines: [tex] \frac{a}{sin(A} = \frac{b}{sin(B} [/tex]
Plug in the values into the formula
[tex] \frac{2}{sin(47} = \frac{b}{sin(80} [/tex]
Cross multiply
[tex] 2*sin(80) = b*sin(47) [/tex]
Divide both sides by sin(47) to make b the subject of formula
[tex] \frac{2*sin(80)}{sin(47} = b [/tex]
[tex] 2.69 = b [/tex]
[tex] b = 2.7 [/tex] (nearest tenth)