Respuesta :
Answer:
(a) n(t) = P(0)*e^(0.010939940t)
(b) 12,674,681 (nearest unit)
(c) 14 years (nearest year)
Step-by-step explanation:
rate = 1.1% / year = 1.011
(a)
P(0) = 12,000,000 = population in 2010
In compound interest format, after t years
P(t) = P(0)* (1.011)^t
Given format = P(0)* e^(rt)
therefore
e^(rt) = 1.011^t use law of exponents
(e^r)^t = 1.011^t
e^r = 1.011
r = log_e(1.011) = 0.010939940 (to 9 decimal places)
required formula is
n(t) = P(0)*e^(0.010939940t)
(b)
in 2015,
P(0)=12000000, n = 5 (years after 2010)
n(5) = 12000000*e^( 0.010939940 * 5 ) = 12,674,680.6 = 12,674,681 (nearest unit)
(c)
to reach 14 million, we equate
n(t) = 14,000,000
12,000,000 *e^(0.010939940*t) = 14,000,000
e^(0.010939940*t) = 14000000/12000000 = 7/6
take log on both sides
0.010939940*t = log(7/6)
t = log(7/6) / 0.010939940 = 14.091 years = 14 years to the nearest year.
See graph attached. Y-axis is in millions, x-axis is in years.
a) [tex]n(t) = 12e^{0.011t}[/tex]
b) The estimate for the population in 2015 is of 12.7 million.
c) The fish population will reach 14 million after 14 years.
d) The sketch is given at the end of this answer.
------------------------------------
Item a:
The exponential model is:
[tex]n(t) = n(0)e^{rt}[/tex]
In which:
- n(0) is the population is 2010.
- r is the growth rate, as a decimal.
- Population of 12 million, thus [tex]n(0) = 12[/tex]
- Growth rate of 1.1%, thus [tex]r = 0.011[/tex].
Thus, the model is:
[tex]n(t) = 12e^{0.011t}[/tex]
Item b:
2015 is 2015 - 2010 = 5 years after 2010, thus this is n(5).
[tex]n(5) = 12e^{0.011(5)} = 12.7[/tex]
The estimate for the population in 2015 is of 12.7 million.
Item c:
This is t for which n(t) = 14, thus:
[tex]n(t) = 12e^{0.011t}[/tex]
[tex]14 = 12e^{0.011t}[/tex]
[tex]e^{0.011t} = \frac{14}{12}[/tex]
[tex]\ln{e^{0.011t}} = \ln{\frac{14}{12}}[/tex]
[tex]0.011t = \ln{\frac{14}{12}}[/tex]
[tex]t = \frac{\ln{\frac{14}{12}}}{0.011}[/tex]
[tex]t = 14[/tex]
The fish population will reach 14 million after 14 years.
Item d:
At the end of this answer, the sketch is given.
A similar problem is given at https://brainly.com/question/23416643