Respuesta :

Answer:

third option

Step-by-step explanation:

Given

[tex]\frac{x+5}{x-2}[/tex] + [tex]\frac{x+6}{x-4}[/tex]

Multiply the numerator/denominator of the first fraction by (x - 4)

Multiply the numerator/denominator of the second fraction by (x - 2)

=[tex]\frac{(x+5)(x-4)}{(x-2)(x-4)}[/tex] + [tex]\frac{(x+6)(x-2)}{(x-2)(x-4)}[/tex]

Express the 2 fractions over the common denominator

= [tex]\frac{(x+5)(x-4)+(x+6)(x-2)}{(x-2)(x-4)}[/tex] ← expand numerator/ denominator using FOIL

= [tex]\frac{x^2+x-20+x^2+4x-12}{x^2-6x+8}[/tex]

= [tex]\frac{2x^2+5x-32}{x^2-6x+8}[/tex]