Answer:
96[tex]\sqrt{3}[/tex] cm²
Step-by-step explanation:
A hexagon can be cut into 6 equilateral triangles.
Using the half shown in the diagram to calculate the apothem a , and the exact value
sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , then
sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{a}{8}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )
2a = 8[tex]\sqrt{3}[/tex] ( divide both sides by 2 )
a = 4[tex]\sqrt{3}[/tex] cm
The area (A) can be calculated using
A = [tex]\frac{1}{2}[/tex] pa ( p is the perimeter of the hexagon )
The sides of the hexagon measure 8 cm ( equilateral Δ has congruent sides )
p = 6 × 8 = 48 cm, so
A = [tex]\frac{1}{2}[/tex] × 48 × 4[tex]\sqrt{3}[/tex] = 96[tex]\sqrt{3}[/tex] cm²