Respuesta :

Answer:

96[tex]\sqrt{3}[/tex] cm²

Step-by-step explanation:

A hexagon can be cut into 6 equilateral triangles.

Using the half shown in the diagram to calculate the apothem a , and the exact value

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{a}{8}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2a = 8[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

a = 4[tex]\sqrt{3}[/tex] cm

The area (A) can be calculated using

A = [tex]\frac{1}{2}[/tex] pa ( p is the perimeter of the hexagon )

The sides of the hexagon measure 8 cm ( equilateral Δ has congruent sides )

p = 6 × 8 = 48 cm, so

A = [tex]\frac{1}{2}[/tex] × 48 × 4[tex]\sqrt{3}[/tex] = 96[tex]\sqrt{3}[/tex] cm²