Respuesta :
B
C
=
16.17
(
2
d
p
)
c
m
Explanation:
In triangle ABC, side
A
C
=
15
, Angles are
∠
B
=
68
0
;
∠
C
=
24
0
and
∠
A
=
180
−
(
68
+
24
)
=
88
0
We know by sine law
A
C
sin
B
=
B
C
sin
A
or
15
sin
68
=
B
C
sin
88
or
B
C
=
15
⋅
sin
88
sin
68
=
16.17
(
2
d
p
)
c
m
Step-by-step explanation:
Answer:
16.17 cm
Step-by-step explanation:
m∠B = 68°, m∠C = 24°, AC = 15 cm
m∠A = 180° - 68° - 24 = 88°
by sine law:
[tex]\dfrac{BC}{\sin(A)}=\dfrac{AC}{\sin(B)}\\\\\\BC=\dfrac{15}{\sin\left(6\big8^o\right)}\cdot \sin\left(8\big8^o\right)\\\\\\BC\approx\dfrac{15}{0.9272}\cdot 0.9994=16.168032....\\\\\\BC\approx16.17[/tex]