Respuesta :

Answer:

[tex]5^{\frac{1}{3}}x^{\frac{1}{3}}y^{\frac{2}{3}}[/tex].

Step-by-step explanation:

The given expression is

[tex]\sqrt[3]{5xy^2}[/tex]

We need to find the expression in rational exponent form.

It can be written as

[tex](5xy^2)^{\frac{1}{3}}[/tex]           [tex][\because \sqrt[n]{x}=x^{\frac{1}{n}}][/tex]

[tex]=(5)^{\frac{1}{3}}(x)^{\frac{1}{3}}(y^2)^{\frac{1}{3}}[/tex]           [tex][\because (ab)^m=a^mb^m][/tex]

[tex]=5^{\frac{1}{3}}x^{\frac{1}{3}}y^{\frac{2}{3}}[/tex]           [tex][\because (a^m)^n=a^{mn}][/tex]

Therefore, the required expression is  [tex]5^{\frac{1}{3}}x^{\frac{1}{3}}y^{\frac{2}{3}}[/tex].