Answer:
[tex]5^{\frac{1}{3}}x^{\frac{1}{3}}y^{\frac{2}{3}}[/tex].
Step-by-step explanation:
The given expression is
[tex]\sqrt[3]{5xy^2}[/tex]
We need to find the expression in rational exponent form.
It can be written as
[tex](5xy^2)^{\frac{1}{3}}[/tex] [tex][\because \sqrt[n]{x}=x^{\frac{1}{n}}][/tex]
[tex]=(5)^{\frac{1}{3}}(x)^{\frac{1}{3}}(y^2)^{\frac{1}{3}}[/tex] [tex][\because (ab)^m=a^mb^m][/tex]
[tex]=5^{\frac{1}{3}}x^{\frac{1}{3}}y^{\frac{2}{3}}[/tex] [tex][\because (a^m)^n=a^{mn}][/tex]
Therefore, the required expression is [tex]5^{\frac{1}{3}}x^{\frac{1}{3}}y^{\frac{2}{3}}[/tex].