1096175
contestada

Fill in the blank with a constant, so that the resulting expression can be factored as the product of two linear expressions: 2ab-6a+5b+___ Please include an explanation too!

Respuesta :

Answer:

[tex]2ab - 6a + 5b - 15[/tex]

Step-by-step explanation:

Given

[tex]2ab - 6a + 5b + \_[/tex]

Required

Fill in the gap to produce the product of linear expressions

[tex]2ab - 6a + 5b + \_[/tex]

Split to 2

[tex](2ab - 6a) + (5b + \_)[/tex]

Factorize the first bracket

[tex]2a(b - 3) + (5b + \_)[/tex]

Represent the _ with X

[tex]2a(b - 3) + (5b + X)[/tex]

Factorize the second bracket

[tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]

To result in a linear expression, then the following condition must be satisfied;

[tex]b - 3 = b + \frac{X}{5}[/tex]

Subtract b from both sides

[tex]b - b- 3 = b - b+ \frac{X}{5}[/tex]

[tex]- 3 = \frac{X}{5}[/tex]

Multiply both sides by 5

[tex]- 3 * 5 = \frac{X}{5} * 5[/tex]

[tex]X = -15[/tex]

Substitute -15 for X in [tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]

[tex]2a(b - 3) + 5(b + \frac{-15}{5})[/tex]

[tex]2a(b - 3) + 5(b - \frac{15}{5})[/tex]

[tex]2a(b - 3) + 5(b - 3)[/tex]

[tex](2a + 5)(b - 3)[/tex]

The two linear expressions are [tex](2a+ 5)[/tex] and [tex](b - 3)[/tex]

Their product will result in [tex]2ab - 6a + 5b - 15[/tex]

Hence, the constant is -15