Respuesta :

Let [tex]x=\sqrt[3]{3}[/tex] and [tex]x^2=\sqrt[3]{9}[/tex]. Then

[tex]\dfrac{2\sqrt[3]{9}}{1+\sqrt[3]{3}+\sqrt[3]{9}}=\dfrac{2x^2}{1+x+x^2}[/tex]

Multiply the numerator and denominator by [tex]1-x[/tex]. The motivation for this is the rule for factoring a difference of cubes:

[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

Doing so gives

[tex]\dfrac{2x^2(1-x)}{(1+x+x^2)(1-x)}=\dfrac{2x^2(1-x)}{1-x^3}[/tex]

so that

[tex]\dfrac{2\sqrt[3]{9}}{1+\sqrt[3]{3}+\sqrt[3]{9}}=\dfrac{2\sqrt[3]{9}(1-\sqrt[3]{3})}{1-3}=\sqrt[3]{9}(\sqrt[3]{3}-1)=3-\sqrt[3]{9}[/tex]