A random sample is drawn from a normally distributed population with mean μ = 31 and standard deviation σ = 1.9. Calculate the probabilities that the sample mean is less than 31.6 for both sample sizes

Respuesta :

Answer:

For sample size n = 39 ; P(X < 31.6) = 0.9756

For sample size n = 76 ; P(X < 31.6) = 0.9970

Step-by-step explanation:

Given that:

population mean μ = 31

standard deviation σ = 1.9

sample mean  [tex]\overline X[/tex] = 31.6

Sample size n                 Probability

39

76

The probabilities that the sample mean is less than 31.6 for both sample size can be computed as  follows:

For sample size n = 39

[tex]P(X < 31.6) = P(\dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}})[/tex]

[tex]P(X < 31.6) = P(\dfrac{31.6 - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{39}}})[/tex]

[tex]P(X < 31.6) = P(Z< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{39}}})[/tex]

[tex]P(X < 31.6) = P(Z< \dfrac{0.6}{\dfrac{1.9 }{6.245}})[/tex]

[tex]P(X < 31.6) = P(Z< 1.972)[/tex]

From standard normal  tables

P(X < 31.6) = 0.9756

For sample size n = 76

[tex]P(X < 31.6) = P(\dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}})[/tex]

[tex]P(X < 31.6) = P(\dfrac{31.6 - \mu}{\dfrac{\sigma }{\sqrt{n}}}< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{76}}})[/tex]

[tex]P(X < 31.6) = P(Z< \dfrac{31.6 - 31}{\dfrac{1.9 }{\sqrt{76}}})[/tex]

[tex]P(X < 31.6) = P(Z< \dfrac{0.6}{\dfrac{1.9 }{8.718}})[/tex]

[tex]P(X < 31.6) = P(Z< 2.75)[/tex]

From standard normal  tables

P(X < 31.6) = 0.9970