Answer:
WX = 8 mm
Step-by-step explanation:
To be able to solve for WX, we need to first find the size of angle [tex]\angle z[/tex].
We use the law of sines in the blue triangle to do such:
[tex]\frac{sin(z)}{11} =\frac{sin(133)}{20} \\sin(z)=\frac{11\,sin(133)}{20} \\sin(z)=0.4022[/tex]
Now we can use this value in the larger right angle triangle where WX is the opposite side to angle [tex]\angle z[/tex], and the 20 mm side is the hypotenuse:
[tex]sin(z)=\frac{opposite}{hypotenuse} \\sin(z)=\frac{WX}{20}\\0.4022=\frac{WX}{20}\\WX=20\,(0.4022)\\WX=8.044\,\,mm[/tex]
which rounded to the nearest integer gives
WX = 8 mm