Respuesta :

Answer:

The value of the polynomial function at P(1) and P(-2) is 24 and 0 respectively.

Step-by-step explanation:

We are given with the following polynomial function below;

[tex]\text{P}(x) = 2x^{5} +9x^{4} +9x^{3} +3x^{2}+7x-6[/tex]

Now, we have to calculate the value of P(x) at x = 1 and x = -2.

For this, we will substitute the value of x in the given polynomial and find it's value.

At x = 1;

[tex]\text{P}(1) = 2(1)^{5} +9(1)^{4} +9(1)^{3} +3(1)^{2}+7(1)-6[/tex]

[tex]\text{P}(1) = (2\times 1) +(9\times 1)+(9 \times 1)+(3\times 1)+(7\times 1)-6[/tex]

[tex]\text{P}(1) = 2 +9+9+3+7-6[/tex]

P(1) = 30 - 6

P(1) = 24

At x = -2;

[tex]\text{P}(-2) = 2(-2)^{5} +9(-2)^{4} +9(-2)^{3} +3(-2)^{2}+7(-2)-6[/tex]

[tex]\text{P}(-2) = (2\times -32) +(9\times 16)+(9 \times -8)+(3\times 4)+(7\times -2)-6[/tex]

[tex]\text{P}(-2) = -64 +144-72+12-14-6[/tex]

P(-2) = 156 - 156

P(-2) = 0

Hence, the value of the polynomial function at P(1) and P(-2) is 24 and 0 respectively.