Answer: $2.95
Step-by-step explanation:
Given: Probability of losing the $7 = [tex]\dfrac{20}{38}[/tex]
Probability of winning $14 = [tex]\dfrac{18}{38}[/tex]
Then, the expected value = (- $7) x ( Probability of losing the $7) + $14 x(Probability of winning $14)
= [tex](-\$ 7)\times\dfrac{20}{38}+(\$14)\times\dfrac{18}{38}[/tex]
= [tex]-\dfrac{70}{19}+\dfrac{126}{19}[/tex]
= [tex]\dfrac{56}{19}\times\approx\$2.95[/tex]
∴ If a doctor pays $7 that the outcome is an odd number, the doctor's
expected value is $2.95.