Respuesta :

Answer:

The answer is 4 + 15 .

Step-by-step explanation:

You have to get rid of surds in the denorminator by multiplying it with the opposite sign :

[tex] \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } [/tex]

[tex] = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } [/tex]

[tex] = \frac{ {( \sqrt{5} + \sqrt{3} ) }^{2} }{( \sqrt{5} - \sqrt{3} )( \sqrt{5} + \sqrt{3}) } [/tex]

[tex] = \frac{ {( \sqrt{5} )}^{2} + 2( \sqrt{5} )( \sqrt{3}) + {( \sqrt{3}) }^{2} }{ {( \sqrt{5}) }^{2} - { (\sqrt{3} )}^{2} } [/tex]

[tex] = \frac{5 + 2 \sqrt{15} + 3 }{5 - 3} [/tex]

[tex] = \frac{8 + 2 \sqrt{15} }{2} [/tex]

[tex] = 4 + \sqrt{15} [/tex]