Respuesta :

Answer:

[tex] \mathsf{ {5x}^{2} + 28x + 21}[/tex]

Option A is the right option.

Step-by-step explanation:

Let's find the area of large rectangle:

[tex] \mathsf{(3x + 6)(2x + 4)}[/tex]

Multiply each term in the first parentheses by each term in the second parentheses

[tex] \mathsf{ = 3x(2x + 4) + 6(2x + 4)}[/tex]

Calculate the product

[tex] \mathsf{ = 6 {x}^{2} + 12x + 12x + 6 \times 4}[/tex]

Multiply the numbers

[tex] \mathsf{ = 6 {x}^{2} + 12x + 12x + 24}[/tex]

Collect like terms

[tex] \mathsf{ = {6x}^{2} + 24x + 24}[/tex]

Let's find the area of small rectangle

[tex] \mathsf{(x - 3)(x - 1)}[/tex]

Multiply each term in the first parentheses by each term in the second parentheses

[tex] \mathsf{ = x( x - 1) - 3(x - 1)}[/tex]

Calculate the product

[tex] \mathsf{ = {x}^{2} - x - 3x - 3 \times ( - 1)}[/tex]

Multiply the numbers

[tex] \mathsf{ = {x}^{2} - x - 3x + 3}[/tex]

Collect like terms

[tex] \mathsf{ = {x}^{2} - 4x + 3}[/tex]

Now, let's find the area of shaded region:

Area of large rectangle - Area of smaller rectangle

[tex] \mathsf{6 {x}^{2} + 24x + 24 - ( {x}^{2} - 4x + 3)}[/tex]

When there is a ( - ) in front of an expression in parentheses, change the sign of each term in the expression

[tex] \mathsf{ = {6x}^{2} + 24x + 24 - {x}^{2} + 4x - 3}[/tex]

Collect like terms

[tex] \mathsf{ = {5x}^{2} + 28x + 21}[/tex]

Hope I helped!

Best regards!