Respuesta :

Answer:

[tex]\boxed{\sf B. \ \sqrt{61} }[/tex]

Step-by-step explanation:

The line can be made into a hypotenuse of a right triangle.

Find the length of the base and the height of the right triangle.

The base (leg) is 6 units.

The height (leg) is 5 units.

Apply Pythagorean theorem.

[tex]\sf c=\sqrt{a^2 +b^2 }[/tex]

[tex]\sf c=\sqrt{6^2 +5^2 }[/tex]

[tex]\sf c=\sqrt{36+25 }[/tex]

[tex]c=\sqrt{61}[/tex]

Answer:

[tex] \sqrt{61} [/tex]

Option B is the correct option

Step-by-step explanation:

Assuming center of co-ordinate axes at lower left corner at the line. So end points are:

( x1 , y1 ) = ( 0 , 0 ) and ( x2 , y2 ) = ( 6 , 5 )

Distance between two points is given by formula:

D [tex] = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]

[tex] = \sqrt{ {6 - 0)}^{2} + {(5 - 0)}^{2} } [/tex]

[tex] = \sqrt{ {6}^{2} + {5}^{2} } [/tex]

[tex] = \sqrt{36 + 25} [/tex]

[tex] = \sqrt{61} [/tex]

Hope this helps..

Best regards!!

Ver imagen Аноним