Respuesta :

Answer:

[tex]\large \boxed{\sf \ \ y=-2 \ \ }[/tex]

Step-by-step explanation:

Hello,

To guess the end behaviours when x tends to [tex]\infty[/tex] you only take into account the highest terms of polynomial expressions.

So the expression will be equivalent to

[tex]\dfrac{-2x^2}{x^2}=-2[/tex]

In other words we can say

[tex]\displaystyle \lim_{x\rightarrow+\infty} \dfrac{-2x^2+3x+6}{x^2+1}=\lim_{x\rightarrow+\infty} \dfrac{-2x^2}{x^2}=-2\\\\\displaystyle \lim_{x\rightarrow-\infty} \dfrac{-2x^2+3x+6}{x^2+1}=\lim_{x\rightarrow-\infty} \dfrac{-2x^2}{x^2}=-2\\\\[/tex]

So, the correct answer is y = -2

Hope this helps.

Do not hesitate if you need further explanation.

Thank you