Answer:
[tex]\large \boxed{\sf \ \ y=-2 \ \ }[/tex]
Step-by-step explanation:
Hello,
To guess the end behaviours when x tends to [tex]\infty[/tex] you only take into account the highest terms of polynomial expressions.
So the expression will be equivalent to
[tex]\dfrac{-2x^2}{x^2}=-2[/tex]
In other words we can say
[tex]\displaystyle \lim_{x\rightarrow+\infty} \dfrac{-2x^2+3x+6}{x^2+1}=\lim_{x\rightarrow+\infty} \dfrac{-2x^2}{x^2}=-2\\\\\displaystyle \lim_{x\rightarrow-\infty} \dfrac{-2x^2+3x+6}{x^2+1}=\lim_{x\rightarrow-\infty} \dfrac{-2x^2}{x^2}=-2\\\\[/tex]
So, the correct answer is y = -2
Hope this helps.
Do not hesitate if you need further explanation.
Thank you