Respuesta :

Answer:

[tex] Area = 400.4 m^2 [/tex]

Step-by-step Explanation:

Given:

∆UVW,

m < U = 33°

m < V = 113°

VW = u = 29 m

Required:

Area of ∆UVW

Solution:

Find side length UV using Law of Sines

[tex] \frac{u}{sin(U)} = \frac{w}{sin(W)} [/tex]

U = 33°

u = VW = 29 m

W = 180 - (33+113) = 34°

w = UV = ?

[tex] \frac{29}{sin(33)} = \frac{w}{sin(34)} [/tex]

Cross multiply

[tex] 29*sin(34) = w*sin(33) [/tex]

Divide both sides by sin(33) to make w the subject of formula

[tex] \frac{29*sin(34)}{sin(33)} = \frac{w*sin(33)}{sin(33)} [/tex]

[tex] \frac{29*sin(34)}{sin(33)} = w [/tex]

[tex] 29.77 = w [/tex]

[tex] UV = w = 30 m [/tex] (rounded to nearest whole number)

Find the area of ∆UVW using the formula,

[tex] area = \frac{1}{2}*u*w*sin(V) [/tex]

[tex] = \frac{1}{2}*29*30*sin(113) [/tex]

[tex] = \frac{29*30*sin(113)}{2} [/tex]

[tex] Area = 400.4 m^2 [/tex] (to nearest tenth).