Answer:
[tex] Area = 400.4 m^2 [/tex]
Step-by-step Explanation:
Given:
∆UVW,
m < U = 33°
m < V = 113°
VW = u = 29 m
Required:
Area of ∆UVW
Solution:
Find side length UV using Law of Sines
[tex] \frac{u}{sin(U)} = \frac{w}{sin(W)} [/tex]
U = 33°
u = VW = 29 m
W = 180 - (33+113) = 34°
w = UV = ?
[tex] \frac{29}{sin(33)} = \frac{w}{sin(34)} [/tex]
Cross multiply
[tex] 29*sin(34) = w*sin(33) [/tex]
Divide both sides by sin(33) to make w the subject of formula
[tex] \frac{29*sin(34)}{sin(33)} = \frac{w*sin(33)}{sin(33)} [/tex]
[tex] \frac{29*sin(34)}{sin(33)} = w [/tex]
[tex] 29.77 = w [/tex]
[tex] UV = w = 30 m [/tex] (rounded to nearest whole number)
Find the area of ∆UVW using the formula,
[tex] area = \frac{1}{2}*u*w*sin(V) [/tex]
[tex] = \frac{1}{2}*29*30*sin(113) [/tex]
[tex] = \frac{29*30*sin(113)}{2} [/tex]
[tex] Area = 400.4 m^2 [/tex] (to nearest tenth).