Respuesta :

Answer:

541.4 m²

Step-by-step Explanation:

Step 1: find m < V

V = 180 - (50+63) (sum of the angles in ∆)

V = 67

Step 2: find side length of XW using the law of sines

[tex] \frac{XW}{sin(V)} = \frac{XV}{sin(W)} [/tex]

Where,

V = 67°

W = 63°

XV = 37 m

XW

[tex] \frac{XW}{sin(67)} = \frac{37}{sin(63)} [/tex]

Multiply both sides by sin(67) to solve for XW

[tex] \frac{XW}{sin(67)}*sin(67) = \frac{37}{sin(63)}*sin(67) [/tex]

[tex] XW = \frac{37*sin(67)}{sin(63)} [/tex]

[tex] XW = 38.2 m [/tex] (to nearest tenth)

Step 3: find the area using the formula, ½*XW*XV*sin(X)

area = ½*38.2*37*sin(50)

Area = 541.4 m² (rounded to the nearest tenth.