Answer:
397.7 m²
Step-by-step Explanation:
Step 1: find m < W
W = 180 - (33+113) (sum of ∆)
W = 34°
Step 2: find side UV using the law of sines
[tex] \frac{UV}{sin(W)} = \frac{VW}{sin(U)} [/tex]
[tex] \frac{UV}{sin(34)} = \frac{29}{sin(33)} [/tex]
Multiply both sides by sin(34)
[tex] \frac{UV}{sin(34)}*sin(34) = \frac{29}{sin(33)}*sin(34) [/tex]
[tex] UV = \frac{29*sin(34)}{sin(33)} [/tex]
[tex] UV = 29.8 m [/tex] (approximated)
Step 3: find the area using the formula, ½*UV*VW*sin(V)
area = ½*29.8*29*sin(113)
Area = 397.7 m² (rounded to the nearest tenth.