1096175
contestada

Solve for $x$, where $x > 0$ and $0 = -21x^2 - 11x + 40.$ Express your answer as a simplified common fraction.[tex]Solve for $x$, where $x \ \textgreater \ 0$ and $0 = -21x^2 - 11x + 40.$ Express your answer as a simplified common fraction.[/tex]

Respuesta :

Answer:

[tex]\large \boxed{\sf \ \ \dfrac{8}{7} \ \ }[/tex]

Step-by-step explanation:

Hello, please consider the following.

The solutions are, for a positive discriminant:

   [tex]\dfrac{-b\pm\sqrt{\Delta}}{2a} \ \text{ where } \Delta=b^2-4ac[/tex]

Here, we have a = -21, b = -11, c = 40, so it gives:

[tex]\Delta =b^2-4ac=11^2+4*21*40=121+3360=3481=59^2[/tex]

So, we have two solutions:

[tex]x_1=\dfrac{11-59}{-42}=\dfrac{48}{42}=\dfrac{6*8}{6*7}=\dfrac{8}{7} \\\\x_2=\dfrac{11+59}{-42}=\dfrac{70}{-42}=-\dfrac{14*5}{14*3}=-\dfrac{5}{3}[/tex]

We only want x > 0 so the solution is

   [tex]\dfrac{8}{7}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you