Answer:
4.75 m/s
Explanation:
The computation of the velocity of the existing water is shown below:
Data provided in the question
Tall = 2 m
Inside diameter tank = 2m
Hole opened = 10 cm
Bottom of the tank = 0.75 m
Based on the above information, first we have to determine the height which is
= 2 - 0.75 - 0.10
= 2 - 0.85
= 1.15 m
We assume the following things
1. Compressible flow
2. Stream line followed
Now applied the Bernoulli equation to section 1 and 2
So we get
[tex]\frac{P_1}{p_g} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{p_g} + \frac{v_2^2}{2g} + z_2[/tex]
where,
P_1 = P_2 = hydrostatic
z_1 = 0
z_2 = h
Now
[tex]\frac{v_1^2}{2g} + 0 = \frac{v_2^2}{2g} + h\\\\V_2 < < V_1 or V_2 = 0\\\\Therefore\ \frac{v_1^2}{2g} = h\\\\v_1^2 = 2gh\\\\ v_1 = \sqrt{2gh} \\\\v_1 = \sqrt{2\times 9.8\times 1.15}[/tex]
= 4.7476 m/sec
= 4.75 m/s